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1. INTRODUCTION

Microrheology provides an important class of techniques for
probing local dynamics of complex fluids,1 such as polymer
solutions2,3 and melts,4�6 biomacromolecular solutions,7�9

cells,10 and colloid suspensions11 bymonitoring themotion of probe
particles using diffusing wave spectroscopy,12 dynamic light
scattering,11 laser deflection particle tracking,13 fluorescence
correlation spectroscopy,14 or atomic force microscopy.15 These
techniques are based on monitoring the time dependence of the
mean-square displacement of probe objects, typically spherical
particles, and relating the characteristics of particle motion to
viscoelastic properties of surrounding environments by using the
generalized Stokes�Einstein relation.16,17 Depending on the
driving force exerted on probe particles, microrheology can
be broadly classified as active or passive. Probe particles in
active microrheology are driven by external forces, typically of
magnetic18 or optical origin,19 while in the case of passive micro-
rheology probe particles are undergoing thermal motion. Besides
the ability to probe bulk rheological properties, microrheology
can also probe local inhomogeneities of matrix materials.

In this paper we present a theoretical description of the
thermal motion (related to passive microrheology) of probe
nanoparticles of size d in polymer liquids (solutions and melts).
We assume that there is no adsorption of polymers onto probe
nanoparticle and no interaction between probe particles. Mobi-
lity of nanoparticles in polymer liquids depends on the relative
particle size with respect to two important length scales. The first

one is the correlation length ξ, defined as the average distance
from a monomer on one chain to the nearest monomer on
another chain.20 This length is on the order of polymer size at the
overlap concentration (ϕ*) and decreases as a power of concen-
tration (volume fraction) ϕ (thick line in Figure 1):

ξðϕÞ = bϕ�v=ð3v � 1Þ ð1Þ
where b is the length of the Kuhn segment and v is the Flory
exponent that depends on the solvent quality. The correlation
length in a theta solvent (with v = 1/2) decreases with concen-
tration as ξ= bϕ�1, while in an athermal solvent (v = 0.588) the
correlation length decreases as ξ = bϕ�0.76. The second im-
portant length scale is the entanglement length (tube diameter)
a,20�22 which is typically a factor of 5 larger than the correlation
length ξ and is proportional to ξ in athermal solvent (medium
line in Figure 1)

aðϕÞ = að1Þϕ�v=ð3v � 1Þ ∼ ϕ�0:76 ∼ ξ,
for athermal ðor goodÞ solvent ð2Þ

but has a different concentration dependence in a theta solvent20

a = að1Þϕ�2=3, for theta solvent ð3Þ
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ABSTRACT: We use scaling theory to derive the time depen-
dence of the mean-square displacement ÆΔr2æ of a probe
nanoparticle of size d experiencing thermal motion in polymer
solutions and melts. Particles with size smaller than solution
correlation length ξ undergo ordinary diffusion (ÆΔr2(t)æ ∼ t)
with diffusion coefficient similar to that in pure solvent. The
motion of particles of intermediate size (ξ < d < a), where a is
the tube diameter for entangled polymer liquids, is subdiffusive
(ÆΔr2(t)æ ∼ t1/2) at short time scales since their motion is
affected by subsections of polymer chains. At long time scales
the motion of these particles is diffusive, and their diffusion coefficient is determined by the effective viscosity of a polymer liquid
with chains of size comparable to the particle diameter d. The motion of particles larger than the tube diameter a at time scales
shorter than the relaxation time τe of an entanglement strand is similar to the motion of particles of intermediate size. At longer time
scales (t > τe) large particles (d > a) are trapped by entanglement mesh, and to move further they have to wait for the surrounding
polymer chains to relax at the reptation time scale τrep. At longer times t > τrep, the motion of such large particles (d > a) is diffusive
with diffusion coefficient determined by the bulk viscosity of the entangled polymer liquids. Our predictions are in agreement with
the results of experiments and computer simulations.
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Here a(1) is the tube diameter in polymer melt with a typical
value a(1) = 5 nm. The size of a polymer chain of N Kuhn
segments

R = bN1=2ϕ�ð2v � 1Þ=ð6v � 2Þ, for ϕ� < ϕ < ϕ�� ð4Þ

is independent of volume fraction ϕ for theta solvent (v = 1/2)
and has a very weak concentration dependence in athermal
(or good) solvent (v = 0.588) (thin line in Figure 1):
R = bN1/2ϕ�0.12. Here ϕ** is the crossover concentration
between semidilute solution regime with partially swollen chains
and the concentrated solution regime with ideal chain statistics.20

Considerable theoretical effort23�33 (see ref 34 for a sum-
mary) has been devoted to describe the diffusion of probe
particles in polymer solutions. These works can be divided into
two broad classes according to the physical concepts applied. The
first class of theories is based on the hydrodynamic interactions
between particles and polymers.23,28 In dilute polymer solutions
chains with size R smaller than the particle size are considered as
“hard spheres” with size equal to their hydrodynamic radii.28

Particles diffusing in dilute polymer solutions experience the
hydrodynamic interaction with these effective hard spheres.
Semidilute polymer solutions are modeled as a hydrodynamic
medium in which polymers are treated as a background of fixed
friction centers of monomer beads.23 The hydrodynamic drag
between moving probe particles and fixed monomer beads is
assumed to be screened at length scale of solution correlation
length.35 The effects of depletion of polymers near the particle
surface on particle diffusion are considered in refs 25�27. All of
these theories23�27 do not take into account the relaxation of

polymer matrix and predict a stretched exponential dependence
of terminal particle diffusion coefficient (at long time scales) on
particle size and solution concentration (see section 3.2 for the
discussion). By contrast, in the present work we argue that the
particle mobility is determined by the dynamics of polymers and
terminal particle diffusion coefficient scales as a power law of the
particle size and solution concentration.

The second class of theories is based on the concept of
“obstruction effect”,29�33 in which the polymer solutions are
treated as a “porous” system with “pore size” characterized by the
distribution of distances from an arbitrary point in the system to
the nearest polymer. This distribution is obtained from a geo-
metric consideration for a suspension of random rigid fibers.29

The diffusion coefficient of particles is assumed to be linearly
proportional to the fraction of “pores” in the polymer solutions
with size larger than that of probe particles. This linear assump-
tion fails, however, when polymers overlap at high concentration
as the probe particles cannot diffuse through “pores” with size
smaller than the particle size. An important difference between
rigid fibers and flexible polymers is that polymers are coil-like.
Therefore, the concentration dependence of “pore” size in coil-
like polymer solutions is different from that in solution of rigid
fibers. Furthermore, polymers are mobile, and therefore particles
with size larger than the spacing between “obstacles” (correlation
length of polymer solutions) are not permanently hindered by
these “obstacles”. The mobility of such particles is determined by
the polymer dynamics.

The scaling theory for mobility of probe particles of different
shapes in polymer melt has been developed by Brochard-Wyart
and de Gennes.36We extend the ideas of ref 36, in which only the
terminal diffusion coefficient (at long time scales) of probe
particles in polymer melt is discussed, to describe the mobility
of particles in polymer liquids over a wide range of concentration
and time scales. In section 2 we present our prediction for the
mean-square displacement of probe particles of various sizes in
polymer liquids at different time scales. We show that there are
three regimes depending on the particle size: (1) mobility of

Figure 1. Three regimes for mobility of probe particles with size d in
polymer solution with volume fraction ϕ shown in the (ϕ, d) parameter
space: regime I for small particles (b < d < ξ), regime II for intermediate
particles (ξ < d < a), and regime III for large particles (d > a). Solid lines
represent the crossover boundaries between different regimes. Thick
andmedium lines correspond to the dependences of correlation length ξ
and tube diameter a in good solvent on volume fraction ϕ, while thin
(top) line describes concentration dependence of polymer size R(ϕ). RF
is the chain size in dilute polymer solution in a good solvent, and R0
corresponds to the chain size in a polymer melt. Dashed lines represent
crossovers between regimes of polymer solution at different concentra-
tions: (1) the dilute solution regime with 0 < ϕ < ϕ*, where ϕ* is polymer
overlap concentration; (2) the semidilute unentangled solution regime
with ϕ* < ϕ < ϕe, where ϕe is the concentration at which polymers start to
entangle with each other; (3) the semidilute entangled solution regime
with ϕe < ϕ < ϕ**; (4) the concentrated entangled solution regime with
ϕ** < ϕ < 1.20 Logarithmic scales.

Figure 2. Time dependence of the product of mean-square displace-
ment ÆΔr2(t)æ and the particle size d for small particles (b < d < ξ, dash-
dotted line), intermediate size particles (ξ < d< a, dashed line), and large
particles (d > a, solid line) in polymer solutions (ξ = b in polymer
melts). Here τ0 is the relaxation time of a monomer, τξ (eq 7) is the
relaxation time of a correlation blob, τd (eq 11) is the relaxation time of a
polymer segment with size comparable to particle size d, τe (eq 14) is the
relaxation time of an entanglement strand, and τrep (eq 17) is the
relaxation (reptation) time of a whole polymer chain. Logarithmic scales.
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small particles (d < ξ) is not much affected by the surrounding
polymers, (2) motion of intermediate size particles (ξ < d < a)
is coupled to segmental motion of the polymers, and (3)
diffusion of large particles (d > a) is affected by entanglements.
The contribution of hopping diffusion to the mobility of
large particles (d > a) trapped in entanglement cages is discussed
only briefly in this paper and will be analyzed in more detail in a
future publication.37 Section 3 deals with the dependencies of
particle diffusion coefficient on solution concentration, particle
size, and polymer molecular weight, and these predictions are
compared with existing experimental and simulation data as
well as with prior theoretical models. Concluding remarks and
future research directions of investigations are discussed in
section 4.

2. MEAN-SQUARE DISPLACEMENT

2.1. Small Particles (d < ξ). If the diameter d of a probe
particle is smaller than the solution correlation length ξ (see
regime I in Figure 1), the motion of the particle is not much
affected by polymers and is very similar to particle diffusion in a
pure solvent. Mean-square displacement of particles (see dash-
dotted line in Figure 2) in this regime is

ÆΔr2ðtÞæ = Dst, for t > τ0 ð5Þ
Here τ0 = ηsb

3/(kBT) is the monomer relaxation time, in
which kB is Boltzmann constant andT is absolute temperature.
The particle diffusion coefficient is determined by solvent
viscosity ηs and is reciprocally proportional to the particle
diameter d

Ds = kBT=ðηsdÞ ð6Þ
Particle diffusion coefficient decreases by a factor on the order of
2 with respect to its value Ds in pure solvent as the solution
concentration crosses from regime I to regime II, in which the
solution correlation length ξ becomes smaller than the particle
size d. Here and below we drop all numerical coefficients and
keep our analysis at the scaling level.
2.2. Intermediate Size Particles (ξ < d < a). Motion of

particles of size larger than the correlation length ξ (in polymer
melt ξ = b) but smaller than the tube diameter a (see regime
II in Figure 1) is not affected by chain entanglements but is
affected by polymer dynamics. There are three regimes for the
mean-square displacement of these intermediate size particles
at different time scales. At short time scales the motion of
such particles is diffusive (see eq 5 and left part of the dashed
line in Figure 2) as particles “feel” local solution viscosity
comparable to that of solvent. This diffusive regime continues
up to the time scale

τξ = ηsξ
3=ðkBTÞ = τ0ðξ=bÞ3 ð7Þ

which corresponds to the relaxation time of a correlation blob
with size ξ. At time t longer than τξ the motion of intermediate
size particles is subdiffusive as it is coupled to the fluctuation
modes of the polymer solution. The polymer mode with
relaxation time t involves the motion of a section of the
chain containing (t/τξ)

1/2 correlation blobs (see Chapter 8
in ref 20). The effective viscosity “felt” by particles at time
scale t is the viscosity of a solution with polymers of size equal
to the chain section size ξ(t/τξ)

1/4. This effective viscosity
is higher than the solvent viscosity by the factor on the order

of the number of correlation blobs in the corresponding
chain section

ηeff ðtÞ = ηsðt=τξÞ1=2, for τξ < t < τd ð8Þ
The effective diffusion coefficient of these particles decreases
with time as

Deff ðtÞ = kBT=ðηeff ðtÞdÞ = Dsðt=τξÞ�1=2,
for τξ < t < τd ð9Þ

and the mean-square displacement of the particle is proportional
to the square root of time

ÆΔr2ðtÞæ = Deff ðtÞt = DsðτξtÞ1=2, for τξ < t < τd ð10Þ
This subdiffusive regime (see the middle part of the dashed line
in Figure 2) continues until the time scale τd at which the size of
chain sections controlling viscosity is comparable with the
particle size ξ(τd/τξ)

1/4 = d.

τd = τξðd=ξÞ4 ð11Þ
At longer times (t > τd) the motion of intermediate size particles
is diffusive (Ær2(t)æ = Dtt) with a terminal diffusion coefficient
(see the right part of the dashed line in Figure 2)

Dt =
kBT

ηeff ðτdÞd
=

kBTξ
2

ηsd3
, for t > τd ð12Þ

where we used eqs 8 and 11 for ηeff and τd. Note that the mean-
square displacement of particles at the onset of this terminal
Brownian diffusion (at time τd) is ξd, and the diffusion coeffi-
cient is proportional to the square of the correlation length and
inversely proportional to the cube of the particle size (see eq 12).
The reason for this extra factor of (ξ/d)2 in the diffusion
coefficient (eq 12) is that the effective viscosity “felt” by the
particles at long times is proportional to the number of correla-
tion blobs in a chain section with size on the order of particle
diameter

ηeff = ηsðd=ξÞ2, for t > τd ð13Þ
The correlation length in polymer melts is on the order of
monomer size (ξ = b), and eq 13 becomes ηeff = ηs(d/b)

2.36

Note that none of the above results depend on the polymer
molecular weight as long as the tube diameter a and/or polymer
size R is larger than the particle size d.
2.3. Large Particles (d > a). Particles larger than the size of

entanglement mesh (d > a, where a is the entanglement tube
diameter20�22) are trapped by the entanglements. The arrest of
particle motion occurs at time scale on the order of the relaxation
time of an entanglement strand:

τe = τξða=ξÞ4 = τ0ðξ=bÞ3ða=ξÞ4 ð14Þ
At short time scales t < τe the motion of large particles follows the
same time dependence as that of intermediate ones for the first
two regimes (see section 2.2). The mean-square displacement of
these large particles at time scale τe

ÆΔr2ðτeÞæ = a2ξ=d ð15Þ
depends on all three important length scales: the tube diameter a,
the correlation length ξ, and the particle size d. The plateau
modulus of the semidilute solution can be obtained from this
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mean-square displacement (eq 9.37 in ref 20)

Ge = kBT=ðÆΔr2ðτeÞædÞ = kBT=ða2ξÞ ð16Þ
Note that if we consider the polymer solution as a “melt” of
correlation blobs, the volume occupied by an entanglement strand
is ξ3(a/ξ)2 = a2ξ, and eq 16 is consistent with plateau modulus
corresponding to thermal energy kBT per entanglement strand. We
stress out that the relation (eq 16) between solution plateaumodulus
and the plateau mean-square displacement of a probe particle
(eq 15) is identical (up to numerical factors on the order of unity)
to the one obtained via the generalized Stokes�Einstein
relation that equates the long time limit of the mean-square
displacement of a particle with the zero-frequency shear
modulus in an elastic solid.17 This self-consistency between
a polymer-dynamics-based scaling model and the fluctua-
tion�dissipation theorem, which makes no assumptions
about microscopic dynamics, further validates the approach
relating the particle mean-square displacement to rheology.
The motion of large particles at time scales longer than τe can

proceed by two mechanisms. The first one is the repta-
tion of surrounding polymers leading to the release of topological
constraints at the reptation time τrep, which is proportional to the
cube of the number of entanglements (N/Ne) per chain

τrep = τeðN=NeÞ3 ð17Þ
Here Ne is the number of monomers per entanglement strand.
Tube length fluctuations20 lead to even stronger dependence of
reptation time on the degree of polymerization: τrep∼N3.4. The
second mechanism that could lead to the motion of particles is
due to fluctuations of local entanglement mesh that will allow
particles to pass through entanglement gates and thus hop
between neighboring entanglement cages. The contribution of
hopping process will be important for diffusion of particles not
significantly larger (d J a) than the tube diameter of entangled
polymer solutions. This hopping mechanism will be discussed in
detail in a separate publication.37 Below we focus on the motion
of large particles due to chain reptation.
At time scales shorter than τrep large particles (d > a) are

trapped by entanglements and their mean-square displacement
is on the order of a2ξ/d (eq 15)

ÆΔr2ðtÞæ = a2ξ=d, for τe < t < τrep ð18Þ
The motion of particles resulting from chain reptation at longer
times (t > τrep) is Brownian with diffusion coefficient determined
by the bulk solution viscosity η

ÆΔr2ðtÞærep =
kBT
ηd

t, for t > τrep ð19Þ

where the viscosity η = Geτrep increases as high powers of the
degree of polymerization N and solution concentration.20 Equa-
tion 19 can also be rewritten as

ÆΔr2ðtÞærep = ðξa2=dÞt=τrep, for t > τrep ð20Þ

The diffusion coefficient of large probe particles due to chain
reptation is

Drep = kBT=ðηdÞ = ξa2=ðdτrepÞ, for d > a ð21Þ

2.4. Microrheology. The viscoelastic properties of polymer
liquids can be determined from the time dependence of the

mean-square displacements of probe particles within a wide
frequency range by using generalized Stokes�Einstein relation,16,17

which relates the viscoelastic spectrum ~G(s) of polymer liquids
to the Laplace transform ÆΔ~r2(s)æ of mean-square displace-
ment ÆΔr2(t)æ:

~GðsÞ ¼ 2kBT
πdsÆΔ~r2ðsÞæ ð22Þ

where s is the Laplace frequency. According to the Kramers�
Kronig relations, storage modulus G0(ω) and loss modulus
G00(ω) correspond to the real and imaginary parts of complex
modulus G*(ω), which is determined by substituting iω for the
Laplace frequency s in eq 22.
Figure 3 shows the viscoelastic properties of polymer liquids

predicted from time-dependent mean-square displacements of
particles with different sizes. Small particles (d < ξ) probe
solvent-like viscosity within entire frequency range (see thin
line in Figure 3). Intermediate size particles (ξ < d < a) also
experience solvent-like viscosity at high frequencies (1/τξ <
ω < 1/τ0). However, at frequencies lower than 1/τξ they probe
segmental dynamics of polymer liquids (see medium lines in
Figure 3). Particles with size larger than the tube diameter (d > a)
are expected to probe full dynamics of the polymer liquids (thick
lines in Figure 3). Similar to intermediate size particles, large
particles probe solvent-like viscosity at high frequencies (1/τξ <
ω < 1/τ0) and probe the segmental dynamics of polymer liquids
at frequencies 1/τe < ω < 1/τξ. At intermediate frequencies (1/
τrep <ω < 1/τe) the large particles are trapped by entanglements
and probe the entanglement plateau modulus (see eq 16). At
very low frequencies (ω < 1/τrep) large particles experience bulk
viscosity. It is important to point out that the probe particles in
microrheology must be nonsticky, so that they do not form
strong physical or chemical bonds with surrounding polymers.

3. PARTICLE DIFFUSION COEFFICIENT

3.1. DependenceonParticle Size. In section 2 above we have
discussed the time dependence of mean-square displacements of
probe particles of different sizes in polymer liquids with fixed
volume fraction (concentration). The mobility of particles in
polymer liquids is classified into three main cases depending on
the size of probe particles: small particles (d < ξ) (regime I in

Figure 3. Viscoelastic properties of polymer liquids predicted from
time-dependent mean-square displacements of small particles (d < ξ,
thin lines), intermediate size particles (ξ < d < a, medium lines), and
large particles (d > a, thick lines). Solid lines correspond to storage
moduli G0, and dashed lines represent loss moduli G00 as functions of
frequency ω. Logarithmic scales.
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Figure 1 and section 2.1), intermediate particles (ξ < d < a)
(regime II in Figure 1 and section 2.2), and large particles (d > a)
(regime III in Figure 1 and section 2.3). In Figure 4, we sketch the
dependence of terminal diffusion coefficientDt on particle size d.
For small probe particles with size d smaller than the solution
correlation length ξ the diffusion coefficient Dt follows the
classical Stokes�Einstein relation (see eq 6) and is mainly
determined by the solvent viscosity ηs, as shown by the first
section of the curve in Figure 4. Terminal diffusion coefficient Dt

of intermediate size particles (ξ < d < a) has a much stronger
dependence on particle size (see eq 12) because they “feel”
effective viscosity that increases as square of the particle size
(eq 13), as shown by the second section of the curve in Figure 4.
As long as the particle size is smaller than the tube diameter, the
terminal particle diffusion coefficient is independent of polymer
molecular weight. The diffusion coefficient of particles with size
larger than the tube diameter (d > a) (regime III in Figure 1 and
section 2.3) is determined by chain reptation process, and
particles “feel” full solution viscosity η (see eq 21). Note that
our scaling calculation suggests a sharp drop of the terminal
diffusion coefficient of particles with size on the order of the tube
diameter (d= a) by a large factor (N/Ne)

3, as shown in Figure 4.
This sharp crossover is broadened (see the dotted line in
Figure 4) by the contribution to particle mobility from the
hopping diffusion process.37

As mentioned in section 2.3, the mobility of particles with size
d larger than the tube diameter a is due to both chain reptation
and hopping processes. To hop from one entanglement cage to a
neighboring one, the particle has to overcome an entropic energy
barrier that increases with the ratio of particle size d to the tube
diameter a. Thus, the waiting time required for the hopping
process increases exponentially with this ratio d/a. This waiting
time, however, can still be shorter than the relaxation of time of
the whole polymer system as long as the particle size is not
significantly larger than the tube diameter. Therefore, the motion
of particles with size slightly larger than the tube diameter will be
dominated by the hopping process with diffusion coefficient
decreasing exponentially with the ratio of particle size to the tube
diameter as D ∼ exp(�d/a),37 shown by the dotted line in
Figure 4, whereas diffusion of very large particles (d . a) is
primarily controlled by the chain reptation process.

It is important to point out that the hopping-controlled
diffusion does not probe the macroscopic viscosity of the
polymer solutions. In fact, this process is possible even in
entangled polymer networks with infinite zero-shear-rate viscos-
ity. The sharp crossover with exponentially strong decrease of the
diffusion coefficient of particles with size d increasing above the
tube diameter a is qualitatively different from the smooth cross-
over of the diffusion coefficient of linear probe chains from below
to above the entangled molecular weight.39 As the size of the
linear probe polymers crosses from below to above the tube
diameter, the molecular weight dependence of the diffusion
coefficient smoothly crosses from D ∼ 1/N to D ∼ 1/N2.3,
which is unlike the exponentially sharp decrease expected for
particles (see Figure 4). In order to understand the reason for this
qualitative difference between linear chains and particle probes,
consider the limiting case with very long matrix chains of
entangled polymer solutions. The linear probe chains of size
larger than the tube diameter can reptate out of their original
tubes and diffuse without encountering any significant entropic
energy barrier.40 However, particles with size several times larger
than the tube diameter (d > a) are exponentially slowed down by
the free energy barrier, and these particles are effectively trapped
by entanglement cages.
The diffusion coefficient of intermediate size particles is

predicted to be inversely proportional to the cube of particle
size: Dt(d)∼ d�3 (see eq 12). This prediction of our model and
also earlier ref 36 has been verified by the molecular dynamics
(MD) simulations of diffusion of particles with different sizes in
unentangled polymer melts.46

3.2. Dependence on Solution Concentration. Experimen-
tally, it is often easier to systematically vary polymer concentra-
tion rather than the particle size. Terminal diffusion coefficient of
particles of a given size d depends on the relative value of this size
d with respect to two concentration-dependent length scales: the
correlation length ξ(ϕ) (thick line in Figure 1) and the tube
diameter a(ϕ) (medium line in Figure 1).

Figure 5. Concentration dependence of terminal diffusion coefficient
Dt of particles in entangled athermal polymer solutions normalized by
their diffusion coefficient Ds = kBT/(ηsd) in pure solvent (see eq 6).
Dashed line is for intermediate size particles (b < d < a(1)), and solid line
is for large particles (d > a(1)). The crossover concentrations ϕd

ξ and ϕd
a,

at which the correlation length ξ and the tube diameter a are on the
order of particle size d, are defined in eqs 23 and 25, respectively. Dotted
line corresponds to the crossover taking into account the contribution of
hopping process to the particle mobility (see discussion in section 3.1).
Logarithmic scales.

Figure 4. Dependence of terminal particle diffusion coefficient Dt on
particle size d in entangled polymer solutions. Dotted line corresponds
to the crossover taking into account the contribution of hopping process
to the particle mobility. Logarithmic scales.
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The mobility of probe particles with the intermediate size d
larger than themonomer size b but smaller than the tube diameter
a(1) of a polymer melt crosses over from regime I to regime II
(see Figure 1) as solution concentration ϕ increases. The cross-
over solution concentration between these two regimes is

ϕξd = ðd=bÞ�ð3v � 1Þ=v ð23Þ
at which the correlation length ξ(ϕd

ξ) is on the order of particle
diameter d. In a theta solvent (v = 1/2) the crossover
volume fraction is ϕd

ξ = (d/b)�1, and in an athermal solvent
(v = 0.588) it is ϕd

ξ = (d/b)�1.32. Below this volume fraction (for
ϕ < ϕd

ξ) the diffusion coefficient of particles is determined by the
solvent viscosity ηs and is almost concentration independent (see
eq 6). At volume fractions above ϕd

ξ particles “feel” segmental
motions of polymers (see eq 9) and particle diffusion coefficient

DtðϕÞ = kBTξ
2

ηsd3
=

kBTb2

ηsd3
ϕ�2v=ð3v � 1Þ,

for ϕξd < ϕ < 1 and b < d < að1Þ ð24Þ
decreases with solution volume fraction as power �2 for theta
solvent and�1.52 for athermal solvent (see dashed line in Figure 5).
If the particle size d is larger than the tube diameter a(1) in

the melt, in addition to the two regimes expected for particles
smaller than a(1) (see dashed line in Figure 5), there is an
additional regime in which particle diffusion coefficient is
determined by chain reptation. This regime begins at a solution
concentration ϕd

a, at which the tube diameter a (see eq 2) is on
the order of the particle size d: a(ϕd

a)= d. In a theta solvent a=
a(1)ϕ�2/3 (see eq 3), and in an athermal solvent a= a(1)ϕ�0.76

(see eq 2); therefore, the corresponding crossover concentra-
tions are

ϕad =
ðd=að1ÞÞ�3=2, theta
ðd=að1ÞÞ�1:32, athermal

8<
: ð25Þ

Large probe particles (d > a(1)) are expected to experience full
solution viscosity above the crossover concentration ϕd

a. The
terminal particle diffusion coefficient in this regime (see solid
line in Figure 5) Dt(ϕ) = Drep = ξa2/(dτrep) is dominated by
the contribution from the chain reptation process (see eq 21).
Recall the relations τe= τ0(ξ/b)

3(a/ξ)4 (see eq 14) and τrep=
τe(N/Ne(ϕ))

3 (see eq 17) and using eqs 1, 2, and 14 and the
relation

NeðϕÞ = Neð1Þ
ϕ�4=3, theta
ϕ�1:32, athermal

(
ð26Þ

one can simplify eq 21 to obtain the concentration dependence
of terminal particle diffusion coefficient:

DtðϕÞ = kBT
ηsd

Neð1Þ2
N3

ϕ�14=3, theta
ϕ�3:93, athermal

for ϕad < ϕ < 1 and d > að1Þ
(

ð27Þ
which is the reciprocal of the concentration dependence of
solution viscosity η(ϕ) (eq 9.45 in ref 20).
We test our scaling prediction on the concentration de-

pendence of the diffusion coefficient of intermediate size
particles (eq 24 and Figure 5) using the data from ref 3, in
which the authors measured the diffusion coefficient of gold

nanoparticles with diameter d = 5 nm in 240 kDa polystyr-
ene/toluene (good solvent) solutions at several solution
concentrations by fluctuation correlation spectroscopy. For
all solution concentrations studied in ref 3 the size of
nanoparticles is larger than the solution correlation length
but smaller than the tube diameter (in an entangled poly-
styrene melt a(1) = 9 nm20), and therefore, the data points
are in the intermediate particle size regime (ξ < d < a). The
particle diffusion coefficients (see points in Figure 6) at low
concentrations exhibit a power law dependence on concen-
tration: Dt(c)∼ c�1.52(0.15, which is in good agreement with
our scaling prediction (eq 24). Note that one data point at
higher concentration corresponds to lower diffusion coeffi-
cient and much larger error bar, possibly due to degradation
of laser focus at such high solution concentration.41 For a
good (athermal) solvent eq 24 can be rewritten as

DtðcÞ ¼ αDsðc=cξdÞ�1:52 ð28Þ
where Ds is the particle diffusion coefficient in pure solvent, cd

ξ

(eq 23) corresponds to the solution concentration at which
the particle size d is equal to the solution correlation length ξ,
and α is the scaling prefactor to be determined by fitting the
scaling prediction to experimental data. The measured diffu-
sion coefficient Ds of the 5 nm gold nanoparticles in pure
solvent (toluene) is about 141 μm2/s3, and the crossover
concentration cd

ξ is about 0.08 g/mL.43 The coefficient α =
0.53 obtained by fitting the scaling model to the three
experimental points at lower concentrations is on the order
of unity, confirming the consistency of the scaling estimate
(eq 28 and solid line in Figure 6).
Earlier models23,33 predict stronger than power law concen-

tration dependence of diffusion coefficient. The theories based
on the concept of hydrodynamic interaction (hydrodynamic
models)23 predict the exponential dependence of the particle
diffusion coefficient on the ratio of particle size d and the solution
correlation length ξ

Dt ¼ Ds expð�khydrod=ξÞ ð29Þ
In good solvent (eq 1 with v = 0.588) this prediction corresponds
to the stretched exponential concentration dependence of

Figure 6. Diffusion coefficient of 5 nm gold nanoparticles in semidilute
solutions of polystyrene in toluene. Solid circles are data from ref 3 for
Mw = 240 kDa polystyrene/toluene solutions above the overlap con-
centration. Lines are predictions of different models: solid line, our
scaling model (eqs 24 and 28 with α = 0.53); dashed line, hydrodynamic
model (eq 30 with khydro = 0.96); dash-dotted line, obstruction model
(eq 31 with kobst = 0.43).
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particle diffusion coefficient

DtðcÞ ¼ Ds expð�khydroðc=cξdÞ0:76Þ ð30Þ
With the values of Ds = 141 μm2/s and cd

ξ = 0.08 g/mL fixed by
separate experiments one can adjust parameter khydro to fit this
prediction (eq 30) to experimental data. The best fit of this
prediction to the three experimental points at lower concentra-
tion, shown by the dashed line in Figure 6, is qualitatively similar
(slightly worse) than that of our scaling prediction.
Terminal particle diffusion coefficient predicted by the the-

ories based on the “obstruction effect” (obstructionmodel)33 has
an even stronger dependence on the ratio of particle size d and
the correlation length ξ: Dt = Ds exp(�π((d + δ)/(ξ + δ))2/4),
where δ corresponds to the effective cylindrical diameter of a
polymer chain considering it as a rigid fiber. The value of δ can be
estimated by δ= v0/b

2, where v0 is the Kuhn monomer volume
and can be obtained from a polymer handbook.44 Typically the
value of δ∼ 0.3 nm is negligible compared with both the particle
size d and the correlation length ξ. Therefore, the prediction of
the obstruction model can be rewritten as

DtðcÞ ¼ Ds expð�kobstðd=ξÞ2Þ ¼ Ds expð�kobstðc=cξdÞ1:52Þ
ð31Þ

Similar to that in hydrodynamic model, the adjustable para-
meter kobst in the obstruction model is determined by fitting
this prediction to the three experimental points at lower
concentrations with the fixed values of Ds = 141 μm2/s and
cd
ξ = 0.08 g/mL. The best fit of the data by the obstruction
model, shown by the dash-dotted line in Figure 6, is qualita-
tively similar (slightly worse) than that of both hydrodynamic
and our scaling models.
In spite of the similarities of the three fits to the experimental

data at lower concentrations (Figure 6), we claim that our model
is the qualitatively correct one, as it properly takes into account

coupling between polymer dynamics and particle motion, which
is the very basis of microrheology. Note that both hydrodynamic
and obstructionmodels completely ignore polymer dynamics and
thus are not applicable to the case of particle diffusion in polymer
melts. In section 3.4 we demonstrate that our scaling model
describes particle diffusion both in polymer melts and polymer
solutions in a consistent way by constructing a “universal” plot.
3.3. Dependence on Polymer Size. Consider the motion of

probe particles of fixed size d in polymer solutions with different
degrees of polymerization N but with the same concentration ϕ.
Terminal diffusion coefficient of small particles with the size
smaller than the correlation length is almost independent of the
polymer molecular weight (dashed line in Figure 7) because
these particles “feel” viscosity close to that of solvent.
As illustrated by the dash-dotted line in Figure 7, intermediate

size particles (ξ < d < a) “feel” the viscosity close to that of
solvent in dilute polymer solutions with degree of polymerization
lower than Nξ

Nξ = ðξ=bÞ1=v = ðξ=bÞ2, theta
ðξ=bÞ1:76, athermal

(
ð32Þ

The semidilute solution viscosity η increases above the solvent
viscosity ηs linearly with degree of polymerization N: η =
ηs(N/Nξ). Intermediate size particles that are larger than
polymers “feel” bulk solution viscosity η with terminal particle
diffusion coefficient inversely proportional to the degree of
polymerization N

DtðNÞ = kBT
ηsdðN=NξÞ, for Nξ < N < Nd ð33Þ

whereNd corresponds to the degree of polymerization at which
the size of polymers is comparable to the particle size d

Nd = Nξðd=ξÞ2 ð34Þ
Terminal diffusion coefficient of intermediate size particles that
are smaller than polymers is independent of the degree of
polymerization in solutions with N > Nd (see eq 12)

DtðNÞ = kBT
ηsdðNd=NξÞ =

kBTξ
2

ηsd3
, for N > Nd ð35Þ

The diffusion coefficient of large particles (d > a) is predicted
to have similar molecular weight dependencies as that of inter-
mediate size particles in dilute and in unentangled semidilute
(see eq 33) solutions. In entangled solutions large particles “feel”
bulk solution viscosity at times longer than solution relaxation
time (see solid line in Figure 7). The terminal particle diffusion
coefficient is reciprocally proportional to the solution viscosity η
and decreases with increasing degree of polymerization N as

DtðNÞ = kBT
ηd

∼ N�3, for N > Ne ð36Þ

The scaling exponent is expected to be even stronger with value
of 3.4 if one takes into account tube length fluctuation.20,22

We compare our predictions for dependence of intermediate
particle diffusion coefficient on molecular weight with available
molecular dynamics simulation and experimental data. It is pre-
dicted that the particle diffusion coefficient DL is independent of
degree of polymerization N in melts and solutions of large (L)
polymers with size R larger than size d of particles (see eq 35),

Figure 7. Dependence of the normalized terminal diffusion coeffi-
cient Dt/Ds of particles in solutions with fixed concentration on
degree of polymerization N, where particle diffusion coefficient in
pure solvent Ds is defined in eq 6. Dashed line corresponds to small
particles (b < d < ξ), dash-dotted line corresponds to intermediate size
particles (ξ < d < a), and solid line corresponds to large particles
(d > a). Here Nξ = (ξ/b)1/v is the number of monomers in a correla-
tion volume (see eq 32), Nd = Nξ(d/ξ)

2 is the number of monomers
in a chain section on the order of intermediate particle size (see eq 34),
and Ne is the number of monomers per entanglement strand. Dotted
line corresponds to the crossover taking into account the contribu-
tion of hopping process to the particle mobility (see discussion in
section 3.1). Logarithmic scales.
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whereas particles are expected to “feel” bulk viscosity in melts and
solutions of short polymers (R < d) (see eq 33). The ratio between
diffusion coefficient DS of intermediate particles in the liquid of
shorter (S) polymers with sizeRS< d and degree of polymerization
NS and diffusion coefficientD

L of the same particles in the liquid of
large polymers of size RL > d is DS/DL = Nd/NS. Here Nd

corresponds to the degree of polymerization at which the polymer
size is on the order of the particle size. As shown in Figure 8, this
prediction is verified by the simulation data from ref 46. Diffusion
coefficient of particles in polymer melts with degree of polymer-
ization below Nd is reciprocally proportional to the degree of
polymerization (see eq 33). The diffusion coefficient DL of
intermediate particles in melts with degree of polymerization N
above Nd is independent of the degree of polymerization (see
eq 35 and horizontal line in Figure 8).
The authors of ref 4 measured the diffusion of gold nanopar-

ticles with diameter d= 5 nm in two monodisperse poly(n-butyl
methacrylate) (PBMA) melts of molecular weight 2.5 and
180 kDa. The root-mean-square end-to-end distance R of
2.5 kDa PBMA chain is∼2.5 nm, and the size of 180 kDa PBMA
chain is about 21 nm as estimated based on data from refs 4 and
45. The 5 nm gold particles are expected to experience bulk
viscosity in 2.5 kDa PBMA melt, but in 180 kDa melt they “feel”
effective viscosity, which is predicted by our model to be the
viscosity of the PBMAmelt with the chain size on the order of the
particle size. It was found that the diffusion coefficient of 5 nm
gold particles in 180 kDa PBMA melt is about 4 times smaller
than that in 2.5 kDa PBMA melt at the same temperature above
glass transition. Therefore, the 5 nm particles in 180 kDa PBMA
melt probe the viscosity of an effective polymer melt with
molecular weight of 10 kDa, which is 4 times higher than
2.5 kDa but 18 times lower than the actual polymer molecular
weight. It turns out that the size of a 10 kDa PBMA chain in melt
is about 5 nm, which is on the order of the particle size and thus
verifies our prediction.
3.4. “Universal” Dependence of Diffusion Coefficient of

Intermediate Size Particles. All the dependencies of diffusion

coefficient of intermediate size particles described above can be
combined into a single “universal” plot. To do that we define
viscosity ηun

ηun ¼ ηðNÞ, for N < Ne

ηðNeÞN=Ne, for N > Ne

(
ð37Þ

which is the bulk viscosity η if polymer liquids are unentangled. If
polymer liquids are entangled, ηun is the extrapolation of bulk
viscosity from the unentangled regime, which is linearly propor-
tional to the polymer molecular weight ηun = η(Ne)N/Ne. One
can define Dun as the naively expected particle diffusion coeffi-
cient in a polymer liquid with viscosity ηun according to classical
(Stokes�Einstein) prediction:

Dun =
kBT
ηund

ð38Þ

Dependencies of terminal particle diffusion coefficient Dt on
(i) particle size d (eq 12), (ii) solution concentration c (eq 24),
and (iii) degree of polymerization N (eqs 33 and 35) can be
rewritten in terms of the dependence of reduced diffusion
coefficientDt/Dun on the ratio d/R of particle and polymer sizes:

Dt

Dun
=

ðd=RÞ�2, for d < R
1, for d > R

for ξ < d < a

(
ð39Þ

If the particle is larger than the polymer (d > R), its diffusion
coefficient Dt is on the order of the classical prediction (eq 39)
where Dun is the bulk viscosity of unentangled polymer liquid. If
the particle is smaller than the polymer (d < R), the naively
expected diffusion coefficient Dun (eq 38) with ηun—viscosity of
unentangled polymer liquids (or “unentangled” extrapolation
(eq 37) for entangled polymer liquids)—underestimates the
diffusion coefficient of intermediate size particlesDt by the factor
(d/R)2. Below we first outline how the “universal” plot ofDt/Dun

as a function of d/R can be constructed using data frommolecular
dynamics simulations and experiments and then compare the
resulting “universal” function with our prediction (eq 39).
The authors of ref 46 reported the terminal diffusion coefficient

Dt of particles with size d ranging from σ to 9σ in an unentangled
polymer melt with degree of polymerization N = 60, where σ is

Figure 9. Dependence of the ratio of terminal particle diffusion
coefficient Dt and “unentangled” diffusion coefficient Dun of intermedi-
ate size particles (defined by eq 38) on the ratio of particle and polymer
sizes d/R in polymer solutions and melts. Empty symbols are molecular
dynamics simulation data from ref 46, and filled circles are experimental
data from ref 3. Solid line is the prediction of our scaling model (eq 39).

Figure 8. Normalized terminal particle diffusion coefficient Dt/Ds in
polymer melt. Solid circles are data from ref 46 for diffusion of a particle
with diameter d = 6σ in melts of polymers with degree of polymerization
N ranging from 10 (unentangled) to 200 (entangled). Here σ corre-
sponds to the Lennard-Jones length.47Nd= 24 represents the crossover
degree of polymerization, below which the particle diffusion coefficient
is reciprocally proportional to the degree of polymerization (see eq 33)
and above which it is independent of the degree of polymerization (see
eq 35). The root-mean-square end-to-end distance of polymer chains
with degree of polymerization Nd is R =

√
6Rg = 6σ, which is equal to

the particle size d.
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Lennard-Jones length.47 In order to construct the “universal” plot,
one needs to know the unentangled viscosity ηun and the polymer
size R. For the unentangled polymer melt with N = 60 the
unentangled viscosity ηun is equal to the bulk viscosity, which
is reported to be 42.5kBTτLJ/σ

3,48 where τLJ is Lennard-Jones
time.47 The diffusion coefficient Dun is calculated using relation
Dun = kBT/(3πdhηun),

49 where dh = d + σ corresponds to the
particle�monomer cross-diameter.50 The end-to-end distance R
of a linear polymer chain of degree of polymerization N > 10 in
simulatedmelts is reported to be R = 1.22σN1/2.51 On the basis of
such information, one can obtain the values of Dt/Dun and dh/R,
and the results are presented by triangles in Figure 9.
Similarly, one can add to the “universal” plot the simulation

data for particles of sizes d = 2σ (empty circles in Figure 9) and
6σ (empty squares in Figure 9) in melts of polymers with degree
of polymerizationN (from 10 to 200) ranging from unentangled
to entangled regime. Within the range of N e 60 the polymers
are unentangled, and thus the unentangled viscosity ηun is equal
to the bulk melt viscosity, which is determined to be linearly
proportional to degree of polymerization.48 For N > 60 the
extrapolated value of ηun from the unentangled regime (eq 38) is
used to calculate Dun. The values of Dt/Dun and dh/R for these
particles of two different sizes are calculated following the same
procedure as described above.
The diffusion coefficient of 5 nm gold nanoparticles in

solutions of 240 kDa polystyrene in toluene at different concen-
trations is reported in ref 3. In order to add these data to the
“universal” plot, one can rewrite the unentangled extrapolation
particle diffusion coefficient as Dun = Ds(ξ/Rg)

2, where Ds (see
eq 6) corresponds to the diffusion coefficient of a probe particle
in a pure solvent. Following the procedure described in ref 52,
the concentration-dependent particle diffusion coefficients are
presented by solid circles in the “universal” plot (see Figure 9).
Note that all points group together because Rg is a weak function
of the solution concentration.
As shown in Figure 9, all the data points for diffusion of

intermediate size spherical probes in polymer liquids collapse
onto a “universal” curve reasonably well. Note that the experi-
mental point at the highest concentration (the largest value of
d/R) deviates from the trend of other data points, possibly due to
the error of measurements because of the degradation of laser
focus at such high solution concentration.41 The “universal”
curve suggests two regimes as predicted by our scaling model
(eq 39): (1) probe particles “feel” bulk viscosity if their size is
larger than the polymer size; (2) particles experience local
viscosity of polymer liquids, which is smaller than the unen-
tangled viscosity ηun by a factor of (d/R)

2, if their size is smaller
than the polymer size and the tube diameter.
We conclude that our predictions for the mobility of inter-

mediate size particles in polymer liquids (melts and solutions)
agree with available data, but a systematic study covering a wide
range of solution concentrations, polymer molecular weight, and
particle sizes is needed for more systematic tests of our theory. It
should be noted that our scaling calculations of particle diffusion
in polymer liquids (melts and solutions) do not take into account
hopping,37 the adsorption of polymer chains onto particles, and
slippage at the particle�polymer interface.53

4. CONCLUSIONS

In the present paper we have developed a scaling theory for the
mobility of nonsticky nanoparticles in polymer liquids (solutions

and melts). There are three different cases for particle diffusion
in polymer liquids depending on the relation of particle size
d with respect to the correlation length ξ and the tube dia-
meter a.
(i) Small particles. Mobility of small particles (b < d < ξ) is

not strongly affected by polymers, and their diffusion
coefficient Ds = kBT/(ηsd) is mainly determined by the
solvent viscosity ηs.

(ii) Intermediate size particles. Motion of intermediate size
particles (ξ < d < a) is not affected by entanglements. At
time scales shorter than the relaxation time τξ of a
correlation blob the motion of intermediate size particles
is not much affected by polymers and is diffusive with
diffusion coefficient mainly determined by solvent visc-
osity. The intermediate size particles probe modes of
surrounding polymers at intermediate time scales τξ< t< τd,
where τd is the relaxation time of a polymer section with
size comparable to particle size d, and therefore,
the particle motion is subdiffusive with mean-square dis-
placement ÆΔr2æ∼ t1/2 (see eq 10). At longer time scales
(t > τd) the motion of intermediate size particles is
diffusive but with diffusion coefficient determined by
the effective viscosity ηeff = ηs(d/ξ)

2 (see eq 13), which
is the viscosity of a polymer liquid with polymer size on
the order of particle size. The effective viscosity ηeff is
independent of polymer molecular weight for R > d and is
only determined by the particle size and the correlation
length of the polymer solution.

(iii) Large particles. Motion of particles with size larger than
the entanglement length (d > a) at time scales shorter
than the relaxation time τe of an entanglement strand is
similar to that of intermediate size particles. At time
scales longer than τe the large particles are trapped by
entanglements, and in order to move further they have to
wait for the polymer liquid to relax during reptation time
τrep. Terminal diffusion coefficient of very large particles
(d . a) is determined by bulk viscosity η of polymer
liquids, which scales with degree of polymerization as
η ∼ N3.4. Particles slightly larger than the tube diameter
(dJ a) do not have to wait for the whole polymer liquid
to relax and can diffuse by hopping between neighboring
entanglement cages.37

The results of particle mobility in polymer liquids could be
applied to test the local structure and dynamics of complex
fluids such as mucus.54 At the crossovers between different
scaling regimes of the size-dependent particle diffusion coeffi-
cient (see section 3.1), the characteristic length scales in
polymer liquids, such as correlation length ξ and entanglement
mesh size a, are on the order of the particle size. It should be
noted that predictions described in the present work directly
apply only to nonadsorbing particles since the adsorption of
polymers on particles will slow down particle motion.37 For
instance, particles without proper protection will stick to the
biomacromolecules in the mucus and diffuse∼1000 times slower
than nonadsorbing particles of the same size.55 Given the time-
dependent mean-square displacement of probe particles, one can
describe the viscoelastic properties of probed complex environ-
ments on the length scale comparable to the particle size within a
wide frequency range by using the generalized Stokes�Einstein
relation.16 The probe particles can be prepared with sizes ranging
from nanometer to micrometer scale, allowing one to probe the
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dynamics of complex fluids over this wide range of length scales.
Extensions of this work to particle mobility in reversible polymer
solutions,56�58 semiflexible polymer solutions,9 and active materi-
als like actin filament networks59 will be presented in our future
publications.
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