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Materials and Methods 

 Both fluorescently-labeled and non-fluorescent dextran fractions with narrow 

molecular size distributions were obtained using size exclusion chromatography and their 

weight average hydrodynamic diameters (d) were characterized by dynamic light 

scattering. To image the penetration of dextran molecules into the PCL, a dilute mixture 

of green-fluorescent dextran of size d and small (d ≈ 2 nm) Texas Red fluorescent 

dextran was added onto well-differentiated HBE cell cultures. 

 In experiments measuring the PCL collapse under osmotic compression, various 

concentrations of endogenous mucus or mucus simulants (large non-fluorescent dextran 

(d > 50 nm) and agarose (d ≈ 44 nm)) were combined with the fluorescent-dextran 

mixture (large green (d > 50 nm) and small Texas Red). High resolution XZ-confocal 

images were obtained using a multi-laser scanning confocal microscope (Model SP5; 

Leica). Bright field microscope was used to measure the height of the cilia exposed to 

mucus/mucus simulants of various concentrations. The dependence of osmotic pressure 

of the endogenous mucus/mucus simulants on their concentration was measured using a 

custom-designed membrane osmometer (47) and then their osmotic moduli were 

calculated. In experiments measuring the osmotic pressure of endogenous mucus on HBE 

cells, excised culture membranes were positioned directly on the osmometer’s membrane, 

in the absence of exogenous fluid (37).  

 

Human tissue procurement and cell culture. Tissues and cells were provided by the Cystic 

Fibrosis (CF) Center Tissue Core Facility of the University of North Carolina at Chapel 

Hill under the auspices of protocols approved by the Institutional Committee on the 
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protection of the rights of human subjects. HBE cells from non-CF lungs are harvested by 

enzymatic digestion as previously described (48). Disaggregated human bronchial 

epithelial (HBE) cells are seeded on 12 mm diameter Transwell Clear supports (Corning 

Costar, Cambridge, MA) at a density of 2.5×105 cells/cm2 in a well-defined airway cell 

media (48). Cultures are maintained at an air-liquid interface until fully differentiated (∼ 

4 weeks). 

 

 Transmission electron microscopy (TEM). Samples for electron microscopy were 

obtained from cryopreserved HBE cell cultures. Cryopreservation was used to maintain 

native conformation of mucus layer, periciliary layer (PCL), plasma membranes, and 

cilia. Cell sections were examined using a FEI/Phillips Tecnai 12 (FEI Company, 

Hillsboro, OR) TEM at 80 kV with a 1k×1k CCD camera (Gatan, Pleasanton, CA) to 

assess their structure at a submicron level. 

 

Antibodies. Monoclonal antisera against MUC1 mucin was purchased from Fujirebio 

Diagnostics, Inc. (Japan), an antibody that recognizes a sialylated carbohydrate epitope 

expressed on the MUC1 mucin. Rabbit polyclonal antibody against MUC4 mucin was 

produced in our laboratory using a specific synthetic peptide located in the type D 

domain of von Willebrand factor (vWF-D) (49). 

 

Immunohistochemistry. Human specimens were obtained postmortem from non-smoking 

patients. Intermediate-size airways were dissected and fixed in paraformaldehyde. 

Paraffin-embedded sections were dewaxed and hydrated. Antigens were retrieved by 
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Dako target retrieval solution (Dako Corporation, Carpinteria, CA). Sections were stained 

with 4’, 6-diamidino-2-phenylindole (DAPI) for nuclei, with monoclonal or polyclonal 

antisera and revealed by anti-mouse or anti-rabbit Alexa-conjugated secondary 

antibodies. Images were captured using a Leica SP5 confocal microscope (Leica, 

Mannheim, Germany). 

 

Fractionation of dextran (unlabeled and fluorescently labeled). Size exclusion 

chromatography was used to separate green fluorescently-labeled dextrans into fractions 

with well-defined molecular sizes (weight average hydrodynamic diameter d). Raw 

batches of 2 MDa dextran (purchased from Sigma-Aldrich, St. Louis, MO and Invitrogen, 

Carlsbad, CA) was fractionated by a Sepharose CL-2B column (GE Healthcare Life 

Sciences, Buckinghamshire, England) and eluted by phosphate buffered saline (PBS) 

with elution volume of 150 ml at a flow rate 0.2 ml/min using a Rheos 2000 pump (Flux 

Instruments, Basel, Switzerland). Fractions of 2 ml were collected and characterized by 

dynamic light scattering to obtain the hydrodynamic size of fractionated polymers. 

Fractionated dextran molecules with desired sizes were dialyzed (10 kDa molecular 

weight cutoff, Thermo Scientific, Rockford, IL) against distilled water and then 

lyophilized prior to use. 

 

Osmotic pressure/moduli measurements. In these studies, we employed a custom-

designed direct-membrane osmometer (47) equipped with a salt and small protein 

permeable osmotic membrane to measure the osmotic pressure of various mucus 

simulants (dextran and agarose) as well as of endogenous mucus. This device consists of 
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a fluid chamber connected to a sensitive pressure transducer (Omega Engineering, 

Stamford, CT) affixed to the bottom of the chamber. A 25 mm diameter polyethersulfone 

membrane (Millipore Inc., Bedford, MA) separated the test chamber from the reference 

chamber filled with PBS. The osmometer was calibrated with commercial osmotic 

pressure standards (Wescor Inc., Logan, UT). 

 An osmotic membrane with 10 kDa molecular weight cutoff (MWCO), which has 

pore diameter about 2.8 nm extrapolated from the data in ref. (50), was used for 

measuring the osmotic pressure of mucus simulants. In each measurement, 0.2 ml of the 

mucus simulant was placed into the fluid chamber, allowing it to come into contact with 

the pressure transducer. The steady-state osmotic pressure of a mucus simulant with a 

given concentration was recorded. 

 The above system was modified to measure the osmotic pressure of endogenous 

mucus accumulated on the surface of HBE cultures, using the approach for measuring 

oncotic pressures from excised tissue samples (37). Here, mucus was allowed to 

accumulate on the surface of the HBE epithelium for up to 4 weeks. The culture-insert 

membrane (Transwell-Clear; Corning Costar, Cambridge, MA) was carefully excised 

with a scalpel and placed directly onto a 100 kDa MWCO (pore diameter ~11 nm 

measured by solute transport methods (50)) osmotic membrane with the apical side 

facing down. To investigate the change in the osmotic pressure with mucus 

concentration, parallel cultures were exposed to various amounts of exogenous fluid (5–

40 µl of PBS) approximately 1 hour before the osmotic pressure measurements. To 

measure the mucus concentration under each experimental condition, dry-to-wet ratio 

experiments were performed (10) in parallel cultures. The obtained concentration defined 
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as the ratio of total mass of solids in mucus to the mass of mucus, including the salt 

contribution (∼1%), is conventionally called % solids. By subtracting 1% from this value 

one can convert % solids to the concentration in terms of g/ml, corresponding to the mass 

of solids excluding salts per unit volume of mucus, as the density of mucus is ∼1 g/ml. 

For instance, 2% solids is equivalent to 0.01 g/ml. 

 In all experiments, the osmotic moduli of mucus simulants (dextran and agarose) 

and endogenous mucus were calculated from the concentration dependence of osmotic 

pressure using equations presented in Supplementary Text. 

 

Measurements of the permeability of PCL using confocal microscopy. To image the 

penetration of dextran molecules of different sizes into the PCL, we employed a dual-

labeling technique of the PCL layer. In each experiment, a solution of green-fluorescent 

probe dextran of a particular hydrodynamic diameter d was mixed with the solution of 

small (d ≈ 2 nm) unfractionated Texas Red fluorescent dextran (average molecular 

weight 3 kDa). Dilute solution of this mixture was then added to the lumen of a freshly 

washed HBE culture. Both fluorescent reagents were added at a concentration of ∼ 0.1 

mg/ml in PBS (with osmotic pressure on the order of 1 Pa). In each experiment, 50 µl 

solutions were added to cell culture and studied within 30 minutes to ensure no 

significant effects of water absorption by cells. High resolution XZ-confocal images were 

obtained using a Leica TCS SP5 laser scanning confocal microscope. The exclusion 

thickness of the green dye was measured as the difference in the thickness of the red and 

yellow (red + green) regions (Fig. 3B). 
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Transmission-light imaging of cilia height. Images of the airway cilia before and after 

exposure to the various osmotic reagents were obtained using differential interference 

contrast (DIC) microscopy of sections of airway cultures viewed in profile. Here, 1mm 

×12mm sections of HBE cell cultures were placed in a special chamber allowing access 

to the apical and basolateral solutions. After control images in PBS, the apical solution 

was replaced with the 150 µl desired osmotic reagents. A custom perfusion device was 

used to exchange solutions during these studies. For studies investigating the cilia height 

under various concentrations of endogenous mucus, immiscible perfluorocarbon 

(Fluorinert FC-77, 3M Specialty Materials, St. Paul, MN) was carefully placed on both 

the apical and basolateral compartments to prevent dehydration (51). 
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Supplementary Text 

Osmotic modulus. The osmotic modulus Κ of a solution defined as 

c
c

∂
∂

=Κ
π

     (S1) 

describes the rate at which its osmotic pressure π changes with concentration c. Typically 

osmotic pressure of polymer solutions in a good solvent can be described by the 

crossover phenomenological equation (32)  
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where NAv is the Avogadro number, kB is the Boltzmann constant, T is the absolute 

temperature, Mn corresponds to the number average molar mass of polymer, and c∗ is the 

polymer overlap concentration. Therefore, the osmotic modulus Κ defined by eq. S1 is 
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Dextran. We have measured the osmotic pressure π of dextran solutions at concentrations 

ranging from dilute to semidilute regime, in which dextran molecules are overlapping 

with each other (32). The dependence of dextran osmotic pressure on solution 

concentration was fitted by eq. S1 (see thin solid red line in fig. S1): 
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The value of exponent α= 2.25 is in perfect agreement with previous study (52). Equation 

S4 corresponds to the number average molar mass of dextran Mn = 2×10
5
 g/mole and the 
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overlap concentration c∗ = 0.025 g /ml. The average molecular size 
3/1

ngR  of polymers 

can be estimated from the number average molar mass and overlap concentration 
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where M is the total molar mass of polymers in pervaded volume V, ni is the number 

fraction of polymers with molar mass Mi, and (Rg)i is the corresponding radius of 

gyration. Therefore, the average molecular size of dextran molecules is 

nm 24
*

3/13 ≈≈
Av

n

n
g

Nc

M
R     (S6) 

This average size of dextran molecules is consistent with the average molecular size 

obtained from both size exclusion chromatography and dynamic light scattering 

characterizations. From eq. S4 one can obtain the osmotic modulus Κ (eqs. S1 and S3) of 

dextran solutions (see thin dashed red line in the insert of fig. S1): 
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This equation was used to estimate the osmotic modulus of dextran solutions in the PCL 

compression and collapse experiments. 

 

Agarose. The concentration dependence of osmotic pressure of agarose in PBS solution 

was measured at 37 °C to keep low-melting point agarose from gelling (blue triangles in 

fig. S1). Fitting these data to eq. S2 we obtained the expression for concentration 

dependence of the agarose osmotic pressure (see the medium solid blue line in fig. S1) 
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The linear (van’t Hoff) term of agarose osmotic pressure is consistent with the number 

average molar mass of 7×10
4
 g/mole and the overlap concentration leads to molecular 

size nm 16
3/1

≈
ngR . This value is consistent with the average molecular size obtained 

from dynamic light scattering characterization. The osmotic modulus of agarose solution 

is calculated using eqs. S1 and S8 






















+××=Κ

25.1

4

g/ml 027.0
25.21

g/ml

Pa
106.3

c
cagr    (S9) 

and plotted by the medium dashed blue line in the insert of fig. S1. Equation S9 was used 

to estimate the osmotic modulus of agarose solution. 

 

Mucus. The osmotic modulus of mucus was determined from the concentration 

dependence of mucus osmotic pressure. We observed two regimes of the concentration 

dependence of mucus osmotic pressure. Within the low concentration regime (from 

∼0.02 g/ml to ∼0.06 g/ml), the osmotic pressure of mucus has a linear dependence on 

concentration π~c. In the high concentration regime (from ∼0.08 g/ml to ∼0.14 g/ml), 

the osmotic pressure increases as a higher power of concentration π~cβ, where 

β=2.21±0.17. Since there is a sharp crossover between these two dependencies, we used a 

modified crossover expression 
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to fit the data over the whole concentration range, with crossover exponent m=3, 

coefficient k=(1.45±0.29)×10
4 

Pa/(g/ml) and crossover concentration c∗=0.081±0.019 

g/ml. The fit of the mucus osmotic pressure to eq. S10 is shown in fig. S1 (thick solid 

green line). 

 Osmotic modulus (defined by eq. S1) of native mucus is calculated using eq. S10 
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and is depicted by the thick dashed green line in the insert in fig. S1. This expression of 

the osmotic modulus of mucus was used to construct the plot (Figs. 4B, 5E) of the 

dependence of PCL and cilia heights on mucus osmotic modulus. 

 

PCL penetration analysis. The mesh size of PCL in living HBE cultures was determined 

from the measurements of the penetration depth into the PCL by fractionated 

fluorescently-labeled probe molecules (e.g. dextrans) of well-defined sizes following the 

addition of dilute solution of these probe molecules to the luminal side of HBE cultures. 

The results are reported as the dependence of penetration depth (distance from the 

epithelial cell surface) on the weight average hydrodynamic diameter of probe molecules. 

The penetration depth was measured as the average thickness of the red zone in the 

confocal images (see Fig. 3B). 

 Note that each fraction of probe molecules obtained by size exclusion 

chromatography is not perfectly monodisperse. The reported size corresponds to the 

weight average hydrodynamic diameter of each fraction. To rationalize this protocol we 
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compare the results obtained by using the weight average hydrodynamic diameter with 

the analysis that takes into account the actual distribution of dextran sizes (the “full 

profile analysis”). Below we demonstrate that the results obtained from these two 

methods are in reasonable agreement with each other within the error of our 

measurements. 

 The basic assumption of “full profile analysis” is that probe molecules can freely 

penetrate into the PCL down to a distance z from epithelial cell surface, at which the 

mesh size ξ(z) in the PCL is on the order of the diameter d of probe molecules. If we 

denote the exclusion thickness z for probe molecules with hydrodynamic diameter d, the 

shortest distance of these molecules from the cell surface, by zd, then we conclude that 

the mesh size at this distance: ξ(zd) ≈ d. This assumption approximates distribution 

profile of probe molecules with size d in the PCL by a step function: molecules with size 

d are evenly distributed in the region with mesh size larger than d, corresponding to the 

distance from the cell surface further than zd; whereas they are excluded from the region 

with the distance from the cell surface closer than zd, where the mesh size ξ is smaller 

than d. 

 Each fraction of dextran molecules was characterized by dynamic light scattering 

and a distribution of the scattered light intensity versus the logarithmic of hydrodynamic 

diameter (log[d]) was obtained. Dividing the intensity value by the corresponding 

molecular size d one obtains the intensity distribution on linear molecular size scale: I(d) 

vs. d, shown in fig. S2A. Note that the scattered light intensity is proportional to the 

product of concentration c and mass M of polymers: I∼cM. Therefore, one can convert 

the intensity-size distribution I(d) to the concentration-size distribution c(d) via 
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( ) ( ) ( ) ν/1~~ ddIMdIdc     (S12) 

because the mass M of polymers is proportional to the power of polymer size d: M∼d
1/ν

, 

where
 ν is the Flory exponent in a good solvent. For flexible linear polymers ν≈3/5 (32) 

and for randomly branched polymers ν≈1/2 (53, 54). Dextran is a linear molecule at low 

molecular weights and a branched molecule at high molecular weights. In our analysis ν≈ 

1/2 was used for dextran fractions with molecular weight higher than 10 kDa (52) and 

ν≈3/5 was used for 3 kDa Texas Red dextran. 

 A typical normalized concentration-size distribution c(d) of a fraction of probe 

molecules is shown by the green solid line in fig. S2B. From this distribution one can 1) 

estimate the weight average hydrodynamic diameter as ∑∑≡
i

i

i

iiw
cdcd , in which ci 

is the concentration for polymers with hydrodynamic diameter di; and 2) calculate the 

normalized concentration distribution S(d) of molecules within this fraction that are 

smaller than d: 

( ) ( ) ( )∫∫=
max

minmin

dd

d

d

d

d

ddcddcdS      (S13) 

shown by the solid green line in fig. S2C. This normalized concentration S(d) 

corresponds to the weight fraction of molecules that are able to penetrate mesh of size 

ξ≈d and, therefore, is proportional to the fluorescent intensity of this fraction of probe 

molecules in the PCL. 

 We measured the fluorescent intensity (concentration) of probe molecules in the 

PCL as a function of distance from the cell surface. The normalized fluorescent intensity 

at distance z from the cell surface is denoted by Q(z) and shown by the green plot in fig. 

S2D. The cell surface is determined by the lower bound of the penetration of small 
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(weight average hydrodynamic diameter <d>w ∼ 2 nm) red dextran molecules (see 

extrapolation of the red curve to Q(z=0) = 0 in fig. S2D, and fig. S4).  

 Our step function approximation implies that for the same values of the 

normalized distributions S(d) and Q(z), the hydrodynamic diameter d of probe molecules 

is related to the distance z from the cell surface at which the penetration of these 

molecules is stopped. This analysis allows one to obtain a profile z(d) describing the 

dependence of exclusion thickness z on molecular size d for any solution of probe 

molecules with known size distribution. 

 The results on the exclusion profile z(d) of probe molecules obtained by the above 

“step function profile analysis” of nine different fractions of green probe molecules are 

shown by green symbols in fig. S2E. These results can be described by a 

phenomenological equation 

( ) ( )[ ] 00 0for     , exp1 zzdzdz <<−−≈ ξ      (S14) 

in which z0=7.0±0.5 µm is the maximum height of the PCL and the characteristic PCL 

mesh size is ξ =17.5±2.4 nm  (see the dashed line in fig. S2E). This equation describes 

the penetration profile of probe molecules with different sizes into the PCL. The 

penetration profile obtained using the weight average molecular size as reported value is 

shown by solid squares in fig. S2E and the best fit to this profile is presented by the solid 

line (eq. S14) with z0=6.9±0.8 µm and ξ =15.0±3.7 nm. These results indicate that the 

penetration profile obtained using the weight average molecular size is in agreement with 

that using “step function profile analysis” within the error of our measurements. 

 In the above we assumed that probe molecules of a particular size d in each 

fraction follow a “step function” distribution in the PCL. In fact, probe molecules with 
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size d can penetrate into the PCL to a distance z from the cell surface smaller than zd, at 

which the mesh size ξ(z<zd) is smaller than diameter d, but they have to pay free energy 

penalty on the order of kBT(d/ξ(z))
γ
 (55). Here the exponent γ depends on the type of the 

probes and solvent quality. For a solid probe particle γ=3, for a linear flexible polymer 

γ=5/3 in a good solvent and γ=2 in a theta solvent (32), and for a randomly branched 

polymer γ=2 in a good solvent (54) and γ=16/7 in a theta solvent (53). Therefore, the 

distribution P(z) of probe molecules with size d in the PCL at distance z smaller than zd 

becomes 

( ) ( )( )[ ]
dzzzdzP <−×= for     , /expconst

γξ     (S15) 

The results obtained from “profile analysis” by considering dextran as a randomly 

branched polymer in a good solvent (γ=2) (52) are shown by the blue symbols in fig. 

S2F. The best fit of eq. S14 to these data is shown by the blue dash-dotted line with 

z0=6.9±0.4 µm and ξ =15.0±2.0 nm, which is in good agreement with the results of 

analysis using the “step function” approximation, shown by the green symbols and the 

green dashed line in fig. S2F. Furthermore, considering dextran as a solid particle (γ=3) 

leads to almost identical results (z0=6.9±0.4 µm and ξ =15.8±2.1 nm; red symbols and 

red solid line in fig. S2F). The fitting parameters z0 and ξ
 
of eq. S14 to the results from 

different types of analysis are listed in table S1. As clear from table S1, all methods of 

profile analysis agree with each other within experimental error bars. 

 

Mesh size distribution in the periciliary layer. As illustrated in fig. S3A, the PCL is 

modeled as an array of cylindrical brushes, in which each brush consists of a cylindrical 
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core (cilium) and grafted polymers (tethered macromolecules), shown in fig. S3B. A 

single cilium brush in an unperturbed state is shown in fig. S3C, in which Rcilium is the 

radius of the cylinder (cilium) and the thickness L0 is defined as the average distance 

from the center of the cylinder to the free ends of tethered macromolecules. The mesh 

size (correlation length) ξ(r) in an unperturbed cylindrical brush at distance r from the 

center of the cylinder is related to the grafting density σ of the macromolecules to the 

surface of the cilium as (56)  

( ) ( ) ( ) ν/1~~ ddIMdIdc     (S16) 

which is shown by fig. S3C and the dashed line in fig. S3E. The volume fraction profile 

of tethered macromolecules is 

( ) ( )( )( )
ciliumRrbrr >≈ for     ,

v3-1 νξξ     (S17) 

where ν is Flory exponent depending on solvent quality (for a theta solvent ν=1/2 and for 

a good/athermal solvent ν=3/5) (32) and b corresponds to the Kuhn length of polymers. 

Here ν=3/5 is used as the physiological solutions are good solvent for macromolecules 

like mucins. The volume fraction profile (eq. S17) can be rewritten in terms of the 

distance r from the center of the cylinder 

( ) ( ) ( ) solvent athermalor  good  , for     ,
-2/33/2

ciliumcilium RrbrbRr >≈ σφ  (S18) 

 

Lateral distribution. The mesh size of a single cylindrical brush in its unperturbed state 

increases as a power law of distance r from the center of the cylinder (eq. S16 and dashed 

line in fig. S3E) due to the steric repulsion between tethered macromolecules. Such non-

uniform lateral distribution of mesh sizes could lead to a non-uniform lateral distribution 

of probe molecules and hence their fluorescent intensity. It will be shown below that the 
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compression of cylindrical brushes (fig. S3C) due to the confinement by the neighboring 

cilia leads to an almost uniform lateral distribution of mesh sizes and therefore probe 

molecules. 

 The thickness of a cylindrical brush decreases under compression from its 

unperturbed thickness L0 to a smaller value L, shown in fig. S3C, D. The volume 

occupied by the grafted polymers is reduced and thus the lateral polymer concentration 

increases (mesh size decreases). The increase of the lateral polymer concentration, 

however, only occurs at distance r larger than certain crossover value rc, illustrated in fig. 

S3D and by the solid line in fig. S3E. In the region with distance r smaller than rc the 

concentration profile is almost unperturbed following the same power law as eq. S18. 

The lateral concentration (mesh size) profile at distance r larger than rc is uniform with 

the value on the order of ξ(rc) (eq. S18) corresponding to the unperturbed concentration 

of polymers at distance rc. The crossover distance rc is determined by the thickness L of 

the cylindrical brush under compression 

( ) ( )∫∫ =
L

r
c

L

r cc

rdrrrdrr πφπφ 22
0

    (S19) 

From the expression of φ(r) (eq. S18) one obtains the relation between the compressed 

brush thickness L and the crossover distance rc 
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The compression ratio defined as the ratio between the volumes occupied by the tethered 

polymers after and before compression 
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can be rewritten as 
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The fraction of the volume occupied by the tethered polymers in which the mesh size has 

uniform lateral distribution is 

22
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−

−
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Using eqs. S20, S22, and S23 one can estimate the lateral distribution of mesh sizes under 

compression. The radius of a cilium is nm 50≈ciliumR . The distance between centers of 

two neighboring cilia is about 300 nm, corresponding to the compression thickness 

nm 150≈L .The major component of tethered polymers is MUC4, with a contour length 

µm 1≈contourl  (57). Therefore, the average end-to-end distance R of an isolated MUC4 is 

( ) nm 150/
5/3 ≈≈ blbR contour , assuming that the Kuhn length of mucin molecules is 

nm 10≈b  (58). The polymers (e.g., MUC4) in a cylindrical brush are extended, implying 

that the unperturbed brush thickness L0 defined as the sum of cilium radius and the size of 

a stretched polymer is larger than nm 200≈+ ciliumRR . Even for L0 = 200 nm the 

compression ratio defined in eq. S21 is 53.0≈Λ , at which the crossover distance rc= 50 

nm is comparable to the cilium radius Rcilium. This indicates that almost 100% (Γ≈ 1) of 

the volume occupied by the grafted polymers has uniform lateral distribution of mesh 

sizes and, therefore, there is almost no lateral concentration profile in this compressed 

cylindrical brush. Larger values of L0 > 200 nm result in stronger compression and thus 

uniform lateral distribution of mesh sizes, leading to almost uniform lateral distribution 

of fluorescent intensity of probe molecules. 
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Mesh size profile. The data from PCL-permeability experiments (solid squares in fig. 

S2E) suggests that probe molecules penetrate into the PCL further as their size decreases. 

Assuming that probe molecules penetrate into the PCL down to distance z from the cell 

surface at which the mesh size ξ(z) is on the order of probe diameter d, such dependence 

of penetration depth on the size of probe molecules provides an indirect measurement of 

mesh size profile in the PCL: ξ(z) ≈ d(z). The determined penetration profile d(z) for 

probe molecules of different sizes is shown by the solid line in fig. S2E (see eq. S14). 

The mesh size profile ξ(z) in the PCL can be approximated by a logarithmic dependence 

on the distance z from the cell surface: 

( ) ( ) 0

0

0 0for     ,log zz
zz

z
zdz <<









−
≈= ξξ     (S24) 

in which the characteristic mesh size of the PCL nm 16≈ξ . Such decay of the mesh size 

towards the cell surface indicates that the tethered macromolecules form a gradient 

protective layer that prevents external objects from reaching the cell surface. Similarly 

from the mesh size profile (eq. S24) one can estimate the concentration profile of the 

tethered macromolecules in the PCL. 
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where zmin is the minimum distance from the cell surface at which the mesh size ξ(zmin) of 

the PCL is comparable to the Kuhn length b of mucins. Considering b ≈ 10 nm (59) the 

value of zmin is about 3 µm.  
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Cilia height under osmotic compression. The force required to bend a cilium is on the 

order of 50 pN (60, 61). Considering that the cross area per cilium is about 

2142 m 107 −×≈Lπ , the required pressure to bend a cilium is on the order of 700 Pa, which 

is within the range of our experimental measurements (Pcc = 800 ± 120 Pa, see Fig. 6E). 

However, one should note that effective compression of the cilium requires the pressure 

difference between its top and bottom sides. The mechanism of cilia bending under high 

osmotic compression is the subject of our current investigation. 
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Supplementary Figures 

 

Fig. S1. Osmotic pressure and modulus of mucus simulants and native mucus. Red 

squares: osmotic pressure of dextran solutions in PBS at room temperature; thin solid red 

line corresponds to dependence of osmotic pressure on solution concentration predicted 

by eq. S4. Blue triangles: osmotic pressure of agarose solutions in PBS; medium solid 

blue line is the best fit of the concentration dependence of agarose solution osmotic 

pressure (eq. S8). Green circles: osmotic pressure of native mucus; thick solid green 

line—best fit of mucus osmotic pressure (eq. S10). Insert: thin dashed red line—

calculated osmotic modulus of dextran solutions (eq. S7); medium dashed blue line—

calculated osmotic modulus of agarose solution (eq. S9); thick dashed green line—

calculated mucus osmotic modulus (eq. S11). Note that the concentrations of mucus are 

all within the physiological range. 
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Fig. S2. Protocol and results for “profile analysis” of penetration of molecules in to 

the periciliary layer. (A) Typical intensity-size distribution curves of red dextran 

molecules (3 kDa Texas Red dextran; weight average hydrodynamic diameter <d>w = 2.2 

nm; red line) and a fraction of green dextran molecules (fraction 36 of 2 MDa stock 

dextran; <d>w = 13.8 nm; green line). (B) Normalized concentration-size distribution 

curves converted from the intensity-size distribution curves in (A) using relation eq. S12 

for 2.2 nm red dextran (red line) and 13.8 nm green dextran (green line). (C) Predicted 

normalized concentration distribution S(d) of red (red line) and green probe molecules 

(green line) smaller than d using “step function” approximation. (D) Normalized 

measured fluorescent intensity (concentration) of red and green probe molecules within 

the PCL versus their distance z from the cell surface. (E) Dependence of distance z from 

the cell surface on the hydrodynamic diameter d of dextran molecules: blue solid 

squares—results obtained using the weight average hydrodynamic diameter of dextran 

fractions, solid line—best fit of these data z(d) ≈ 6.9µm[1-exp(-d/15.0nm)]; green 

symbols— results based on “full profile analysis” using “step function” approximation, 

dashed line—best fit of these data z(d) ≈ 7.0µm[1-exp(-d/17.5nm)]. Note that the red 

solid circles are results for 3 kDa Texas Red dextran. (F) Comparison between the results 

from the “full profile analysis” using “step function” approximation (green symbols, 

green dashed line—best fit of these data z(d) ≈ 7.0µm[1-exp(-d/17.5nm)]), “randomly 

branched” approximation assuming that dextran is a randomly branched polymer with γ = 

2 in eq. S15 (blue symbols, blue dash-dotted line—best fit of these data z(d) ≈ 6.9µm[1-

exp(-d/15.0 nm)]), and “solid particle” approximation assuming that dextran molecules 

are solid particles with γ = 3 in eq. S15 (red symbols, red solid line—best fit of these data 

z(d) ≈ 6.9µm[1-exp(-d/15.8 nm)]). Black dash-dotted lines in (E) and (F) correspond to 

the 7 µm length of extended cilia. 
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Fig. S3. Brush model of the PCL. (A) PCL is modeled as an array of cylindrical 

brushes; (B) Lateral cross-section view of the PCL as an array of cylindrical brushes, in 

which bio-macromolecules are tethered to the cylindrical cilia. The radius of a cilium is 

Rcilium and the distance between the centers of two neighboring cilia is 2L. (C) An 

unperturbed single cilium brush with thickness L0 expected to be larger than L. (D) The 

brush is compressed laterally from its unperturbed thickness L0 to L due to the limited 

space between neighboring cilia. (E) Mesh size profile for an unperturbed cilium brush 

(dashed line) and a laterally compressed cilium brush (solid line). Logarithmic scales. 
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Fig. S4. Representative XZ-confocal images for HBE cells added with dilute mixture 

solution of unfractionated Texas Red dextran with average molecular weight 3 kDa 

and Rhodamine 110. Rhodamine 110 is a fluorescently green molecule of very small 

size (hydrodynamic diameter ~ 1.6 nm (62)). The overlap between the penetration for the 

3 kDa red dextran and that for green Rhodamine 110 into the PCL, shown by the yellow 

zone, suggests that the 3 kDa red dextran can also reach the cell surface. This is further 

demonstrated by the overlap of the normalized intensity profiles for both the red dextran 

and green Rhodamine molecules. 
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Fig. S5. Representative confocal images showing the exclusion thickness zPCL of 

probe molecules of different sizes in the PCL. The table shows the exact numbers of 

weight average hydrodynamic diameter <d>w and the corresponding exclusion 

thicknesses zPCL. 
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Supplementary Tables 

 

Table S1. List of fitting parameters z0 and ξ of eq. S14 to results from different analyses. 

  Full profile analysis 

 Weight average Step function Randomly 

branched 

Solid particle 

z0 (µm) 6.9±0.8 7.0±0.5 6.9±0.4 6.9±0.4 

(nm) ξ  15.0±3.7 17.5±2.4 15.0±2.0 15.8±2.1 
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